

From similar triangles we have

$$\frac{l_1}{r_1} = \frac{l_1 + l}{r_2}$$
which gives
 $r_2 l_1 = r_1 l_1 + r_1 l$ or $(r_2 - r_1) l_1 = r_1 l$
Putting this into the first equation, we get
 $A = \pi (r_1 l_1 + r_2 l)$ (2)
or $A = 2\pi r l$ where
 $r = \frac{1}{2} (r_1 + r_2)$
is the average radius of the band.
. general situation:
 η
 $q = f(x)$
consider the above surface detained from
rotating the curve $y = f(x)$, $a \le x \le b$, about

the x-axis, where f is positive and has a continuous derivative.

We devide the interval [a, b] into a subintervals with endpoints x, x, ..., xn and equal width sx: . Yi ッド By formula (2) we get for the surface area of each band; $2\pi \frac{y_{i-1} + y_i}{2} |P_{i-1}, P_i|$ For [Pi-, Pi] we get from the arc length $|P_{i-1}P_i| = \sqrt{1 + \left[p^1(x_i^*)\right]^2} \Delta x$ where xit is some number in [xi-1, xi]. When Δx is small, we have $y_i = f(x_i^*) \approx f(x_i^*)$ and also $y_{i-1} = f(x_{i-1}) \approx f(x_i^*)$, since f is continuous. Therefore $2\pi \frac{\mathcal{Y}_{i-1} + \mathcal{Y}_{i}}{2} \left[\mathcal{P}_{i}, \mathcal{P}_{i} \right] \sim 2\pi f(x_{i}^{*}) \left[1 + \left[f'(x_{i}^{*}) \right]^{2} \Delta x \right]$

$$\Rightarrow A \approx \sum_{i=1}^{n} 2\pi f(x_{i}^{*}) \sqrt{1 + (f^{*}(x_{i}^{*}))^{2}} \Delta x \quad (3)$$
Taking the limit under we obtain:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} 2\pi f(x_{i}^{*}) \sqrt{1 + (f^{*}(x_{i}^{*}))^{2}} \Delta x$$

$$= \int_{0}^{n} 2\pi f(x_{i}) \sqrt{1 + (f^{*}(x_{i}))^{2}} dx$$

$$\frac{b}{2\pi} \int_{0}^{2} 2\pi f(x_{i}) \sqrt{1 + (f^{*}(x_{i}))^{2}} dx$$

Symbol ically, we can also write this the
notation for arc length as
$$S = \int_{2\pi} y \, ds$$
 or $S = \int_{2\pi} x \, ds$
(for rotation about
 $\gamma - \alpha x is$)

Example 8.4:
The curve
$$y = \sqrt{4-x^2}$$
, $-1 \le x \le 1$, is an
ave of the circle $x^2 + y^2 = 4$. Find the
surface area after votation about the x-axis.
Solution:
 $\frac{dy}{dx} = \frac{1}{2}(4-x^2)^{-1/2}(-2x) = \frac{-x}{\sqrt{4-x^2}}$
and so, by formula (5), the surface area is
 $S = \int_{-1}^{1} 2\pi y \sqrt{1+(\frac{dy}{dx})^2} dx$
 $= 2\pi \int_{-1}^{1} \sqrt{4-x^2} \sqrt{1+\frac{x^2}{4-x^2}} dx$
 $= 2\pi \int_{-1}^{1} \sqrt{4-x^2} \frac{2}{\sqrt{4-x^2}} dx$
 $= 4\pi \int_{-1}^{1} 1 dx = 4\pi (2) = 8\pi$.

Example 8.5:
The arc of the parabola
$$y=x^{2}$$
 from
(1.1) to (2.4) is rotated about the y-axis.
Find the area of the resulting surface.
Solution 1:
Using $y=x^{2}$ and $dy = 2x$
we have,
 $S = \int 2\pi x \, ds$
 $= 2\pi \pi \int_{1}^{2} x \, \left[1 + \frac{dy}{dx}\right]^{2} \, dx$
 $= 2\pi \pi \int_{1}^{2} x \, \left[1 + \frac{dy}{dx}\right]^{2} \, dx$
Substituting $u = 1 + \frac{dy}{dx}$, we have $du = 8x \, dx$.
 $= S = \frac{\pi}{4} \int_{2}^{2} \sqrt{u} \, du = \frac{\pi}{4} \left[\frac{2}{3} u \, \frac{3}{2}\right]_{5}^{17}$
 $= \frac{\pi}{6} \left(17 \, \sqrt{17} - 5 \sqrt{5}\right)$

Solution 2:
Using
$$x = \sqrt{y}$$
 and $\frac{dx}{dy} = \frac{1}{2\sqrt{y}}$
we have
 $S = \int 2\pi x \, dx = \int 2\pi x \, \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$
 $= 2\pi \int \sqrt{1 + \frac{1}{4y}} \, dy = \pi \int \sqrt{4y + 1} \, dy$
 $= \frac{\pi}{4} \int \sqrt{1 + \frac{1}{4y}} \, dy = (where \ u = 1 + 4y)$
 $= \frac{\pi}{6} \left(17 \sqrt{17} - 5 \sqrt{5} \right)$

Example 8.6:
Find the area of the surface generated
by rotating the curve
$$y=e^x$$
, $0 \le x \le 1$,
about the x-axis.
Solution:

Using formula (5) with

$$Y = e^{x}$$
 and $\frac{dy}{dx} = e^{x}$

We have

$$S = \int_{0}^{1} 2\pi y \sqrt{H(\frac{dy}{dx})^{2}} dx$$

$$= 2\pi \int_{0}^{1} e^{x} \sqrt{H(\frac{dy}{dx})^{2}} dx$$

$$= 2\pi \int_{0}^{1$$

<u>\$ 8. 3 Polar coordinates</u> Here we describe a coordinate system introduced by Newton, called the "polar coordinate system", which is more convenient for many purposes, 'P(r,0) The pair (r, 0) are called "polar coordinates" of P. Convention: An angle is positive if measured in the counterclockwise direction and negative otherwise. 6)+π θ extention to negive values of r

The opposite direction is given by:

$$r^{2} = x^{2} + y^{2} \qquad tou \theta = \frac{y}{x} \qquad (2)$$

$$Example B.8:$$
i) Convert the point $(2\pi/3)$ from polar
to Cartesian coordinates:
Equations (1) give

$$x = r \cos \theta = 2 \cos \frac{\pi}{3} = 2 \cdot \frac{1}{2} = 1$$

$$Y = r \sin \theta = 2 \sin \frac{\pi}{3} = 2 \cdot \frac{13}{2} = 13$$
ii) Represent the point with Cartesian
coordinates $(1, -1)$ in terms of polar coordinates,
Equations (2) give

$$r = \sqrt{x^{2} + y^{2}} = \sqrt{1^{2} + (-1)^{2}} = \sqrt{2}$$

$$ton \theta = \frac{y}{x} = -1$$

$$Definition 8 \cdot 3:$$
The "graph of a polar equation" (polar curve)

$$r = f(\theta), a more generally F(r, \theta) = 0, consists$$
of all points P that have at least are

