§8.2 Area of a Surface of Revolution
A surface of revolution is formed when a curve is rotated about a line.

- cylinder:

$$
\Rightarrow A=2 \pi r h
$$

- circular cone

$$
\theta=2 \pi r / l \Rightarrow A=\frac{1}{2} l^{2} \theta=\frac{1}{2} l^{2}\left(\frac{2 \pi r}{l}\right)=\pi r l
$$

- band

$$
\begin{align*}
A= & \pi r_{2}\left(l_{1}+l\right)-\pi r_{1} l_{1} \\
& =\pi\left[\left(r_{2}-r_{1}\right) l_{1}+r_{2} l\right] \tag{1}
\end{align*}
$$

From similar triangles we have

$$
\frac{l_{1}}{r_{1}}=\frac{l_{1}+l}{r_{2}}
$$

which gives

$$
r_{2} l_{1}=r_{1} l_{1}+r_{1} l \quad \text { or }\left(r_{2}-r_{1}\right) l_{1}=r_{1} l
$$

Putting this into the first equation, we get

$$
\begin{equation*}
A=\pi\left(r_{1} l+r_{2} l\right) \tag{2}
\end{equation*}
$$

or $A=2 \pi r l$ where

$$
r=\frac{1}{2}\left(r_{1}+r_{2}\right)
$$

is the average radius of the band.

- general situation:

consider the above surface obtained from rotating the curve $y=f(x), a \leq x \leq b$, about the x-axis, where f is positive and has a continuous derivative.

We devide the interval $[a, b]$ into n subintervals with endpoints $x_{0}, x_{1}, \ldots, x_{n}$ and equal width Δx :

By formula (2) we get for the surface area of each band:

$$
2 \pi \frac{y_{i-1}+y_{i}}{2}\left|P_{i-1} P_{i}\right|
$$

For $\left|P_{i-1} P_{i}\right|$ we get from the arc length

$$
\left|P_{i-1} P_{i}\right|=\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

where x_{i}^{*} is some number in $\left[x_{i-1}, x_{i}\right]$.
When Δx is small, we have $y_{i}=f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right)$ and also $y_{i-1}=f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)$, since f is continuous. Therefore

$$
\left.2 \pi \frac{y_{i-1}+y_{i}}{2} \mathbb{P}_{i-1} P_{i} \right\rvert\, \sim 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

$$
\begin{equation*}
\Rightarrow \quad A \approx \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \tag{3}
\end{equation*}
$$

Taking the limit $n \rightarrow \infty$ we obtain:

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \\
& =\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

Definition 8.2 (surface area):
Let $f:[a, b] \rightarrow \mathbb{R}_{+}$be a positive function with continuous derivative. Then we define the "surface area" obtained by rotating the curve $y=f(x), a \leq x \leq b$, about the x-axis as

$$
\begin{align*}
S & =\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& =\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \tag{4}
\end{align*}
$$

If the curve is described as $x=g(y), c \leq y \leq d$, then the formula becomes

$$
S=\int_{c}^{d} 2 \pi y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y(5)
$$

Symbol ically, we can also write this ing the notation for are length as

$$
S=\int 2 \pi y d s \quad \text { or } \quad S=\int 2 \pi x d s
$$

(for rotation about

$$
y \text {-axis }
$$

Example 8.4:
The curve $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$, is an arc of the circle $x^{2}+y^{2}=4$. Find the surface area after rotation about the x-axis.

Solution:

$$
\frac{d y}{d x}=\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2}(-2 x)=\frac{-x}{\sqrt{4-x^{2}}}
$$

and so, by formula (5), the surface area is

$$
\begin{aligned}
S & =\int_{-1}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \frac{2}{\sqrt{4-x^{2}}} d x \\
& =4 \pi \int_{-1}^{1} 1 d x=4 \pi(2)=8 \pi
\end{aligned}
$$

Example 8.5:
The arc of the parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$ is rotated about the y-axis. Find the area of the resulting surface.
Solution 1:
Using $y=x^{2}$ and $\frac{d y}{d x}=2 x$
we have,

$$
\begin{aligned}
S & =\int_{2} 2 \pi x d s \\
& =\int_{1}^{2} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{1}^{2} x \sqrt{1+4 x^{2}} d x
\end{aligned}
$$

Substituting $u=1+\operatorname{li}_{17} x^{2}$, we have $d u=8 x d x$.

$$
\begin{aligned}
\Rightarrow \quad S & =\frac{\pi}{4} \int_{5}^{17} \sqrt{u} d u=\frac{\pi}{4}\left[\frac{2}{3} u^{3 / 2}\right]_{5}^{17} \\
& =\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
\end{aligned}
$$

Solution 2:
using $x=\sqrt{y}$ and $\frac{d x}{d y}=\frac{1}{2 \sqrt{y}}$
we have

$$
\begin{aligned}
S & =\int 2 \pi x d x=\int_{1}^{4} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =2 \pi \int_{1}^{4} \sqrt{y} \sqrt{1+\frac{1}{4 y}} d y=\pi \int_{1}^{4} \sqrt{4 y+1} d y \\
& \left.=\frac{\pi}{4} \int_{5}^{17} \sqrt{u} d u \quad \quad \text { (where } u=1+4 y\right) \\
& =\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
\end{aligned}
$$

Example 8.6:
Find the area of the surface generated by rotating the curve $y=e^{x}, 0 \leq x \leq 1$, about the x-axis.

Solution:
using formula (5) with

$$
y=e^{x} \quad \text { and } \quad \frac{d y}{d x}=e^{x}
$$

we have

$$
\begin{aligned}
S & =\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1} e^{x} \sqrt{1+e^{2 x}} d x \\
& =2 \pi \int_{1}^{e} \sqrt{1+u^{2}} d u \quad\left(u=e^{x}\right) \\
& =2 \pi \int_{\pi / 4}^{\alpha} \sec ^{3} \theta d \theta \quad(u=\tan \theta \text { and } \\
= & \left.2 \pi \cdot \tan ^{-1} e\right) \\
& =\pi[\sec \alpha \tan \alpha+\ln (\sec \alpha+\tan \alpha) \\
& -\sqrt{2}-\tan (\sqrt{2}+1)]
\end{aligned}
$$

Since $\tan \alpha=e$, we have

$$
\begin{aligned}
& \sec ^{2} \alpha=1+\tan ^{2} \alpha=1+e^{2} \quad \text { and } \\
& S=\pi\left[e \sqrt{1+e^{2}}+\ln \left(e+\sqrt{1+e^{2}}\right)-\sqrt{2}\right. \\
& -\ln (\sqrt{2}+1)]
\end{aligned}
$$

§ 8. 3 Polar coordinates
Here we describe a coordinate system introduced by Newton, called the "polar coordinate system", which is more convenient for many purposes.

The pair (r, θ) are called "polar coordinates" of P.
Convention:
An angle is positive if measured in the counterclockwise direction and negative otherwise.

extention to negive values of r
$(-r, \theta)$ represents the same point as $(r, \theta+\pi)$.
Example 8.7:
Plot the points whose polar coordinates are
i) $(1,5 \pi / 4)$
ii) $(2,3 \pi)$
solution:

ii)

Connection between polar and (artesian coordinates ($x-y$ coordinates):

$$
\begin{equation*}
\Rightarrow \quad x=r \cos \theta \quad y=r \sin \theta \tag{1}
\end{equation*}
$$

These equations are valid for all values of r and θ.

The opposite direction is given by:

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x} \tag{2}
\end{equation*}
$$

Example 8.8:
i) Convert the point $(2, \pi / 3)$ from polar to Cartesian coordinates:
Equations (1) give

$$
\begin{aligned}
& x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1 \\
& y=r \sin \theta=2 \sin \frac{\pi}{3}=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3}
\end{aligned}
$$

ii) Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates. Equations (2) give

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
\tan \theta & =\frac{y}{x}=-1
\end{aligned}
$$

Definition 8.3:
The "graph of a polar equation" (polar curve) $r=f(\theta)$, or more generally $F(r, \theta)=0$, consists of all points P that have at least are
polar representation (r, θ) whose coordinates satisfy the equation.
Example 8.9:
i) What curve is represented by the polar equation $r=2$?

Mare generally, $r=a$ represents a circle with radius a and origin 0 .

ii) Sketch the carve $\theta=1$

iii) sketch the curve with polar equation

$$
r=2 \cos \theta:
$$

We ally need values of θ between 0 and π (cos is periodic beyond π)

We can also convert the equation to a Cartesia equation and obtain:

$$
\begin{aligned}
& \quad r=2 \cos \theta=2 x / r \quad\left(\cos \theta=\frac{x}{r}\right) \\
& \Rightarrow \quad 2 x=r^{2}=x^{2}+y^{2} \\
& \text { or } \quad x^{2}+y^{2}-2 x=0
\end{aligned}
$$

Completing the square, we obtain

circle with center (1,0) and radius 1 .
iv) Sketch the curve $r=1+\sin \theta$.

v) sketch the curve $r=\cos 2 \theta$

